Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 42(1): 148-163, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442638

RESUMEN

The foot is responsible for the bodyweight transfer to the ground, while adapting to different terrains and activities. Despite this fundamental role, the knowledge about the foot bone intrinsic kinematics is still limited. The aim of the study is to provide a quantitative and systematic description of the kinematics of all bones in the foot, considering the full range of dorsi/plantar flexion and pronation/supination of the foot, both in weightbearing and nonweightbearing conditions. Bone kinematics was accurately reconstructed for three specimens from a series of computed tomography scans taken in weightbearing configuration. The ground inclination was imposed through a set of wedges, varying the foot orientation both in the sagittal and coronal planes; the donor body-weight was applied or removed by a cable-rig. A total of 32 scans for each foot were acquired and segmented. Bone kinematics was expressed in terms of anatomical reference systems optimized for the foot kinematic description. Results agree with previous literature where available. However, our analysis reveals that bones such as calcaneus, navicular, intermediate cuneiform, fourth and fifth metatarsal move more during foot pronation than flexion. Weightbearing significantly increase the range of motion of almost all the bone. Cuneiform and metatarsal move more due to weightbearing than in response to ground inclination, showing their role in the load-acceptance phase. The data here reported represent a step toward a deeper understanding of the foot behavior, that may help in the definition of better treatment and medical devices, as well as new biomechanical model of the foot.


Asunto(s)
Calcáneo , Huesos Metatarsianos , Fenómenos Biomecánicos , Pie/fisiología , Soporte de Peso/fisiología
2.
Commun Biol ; 6(1): 1061, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857853

RESUMEN

The evolution of the medial longitudinal arch (MLA) is one of the most impactful adaptations in the hominin foot that emerged with bipedalism. When and how it evolved in the human lineage is still unresolved. Complicating the issue, clinical definitions of flatfoot in living Homo sapiens have not reached a consensus. Here we digitally investigate the navicular morphology of H. sapiens (living, archaeological, and fossil), great apes, and fossil hominins and its correlation with the MLA. A distinctive navicular shape characterises living H. sapiens with adult acquired flexible flatfoot, while the congenital flexible flatfoot exhibits a 'normal' navicular shape. All H. sapiens groups differentiate from great apes independently from variations in the MLA, likely because of bipedalism. Most australopith, H. naledi, and H. floresiensis navicular shapes are closer to those of great apes, which is inconsistent with a human-like MLA and instead might suggest a certain degree of arboreality. Navicular shape of OH 8 and fossil H. sapiens falls within the normal living H. sapiens spectrum of variation of the MLA (including congenital flexible flatfoot and individuals with a well-developed MLA). At the same time, H. neanderthalensis seem to be characterised by a different expression of the MLA.


Asunto(s)
Pie Plano , Hominidae , Adulto , Animales , Humanos , Hominidae/anatomía & histología , Pie/anatomía & histología , Fósiles
3.
J Foot Ankle Res ; 14(1): 66, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930383

RESUMEN

BACKGROUND: A complete definition of anatomical reference systems (ARS) for all bones of the foot and ankle complex is lacking. Using a morphological approach, we propose new ARS for these bones with the aim of being highly repeatable, consistent among individuals, clinically interpretable, and also suited for a sound kinematic description. METHODS: Three specimens from healthy donors and three patients with flat feet were scanned in weight-bearing CT. The foot bones were segmented and ARS defined according to the proposed approach. To assess repeatability, intra class coefficients (ICC) were computed both intra- and inter-operator. Consistency was evaluated as the mean of the standard deviations of the ARS position and orientation, both within normal and flat feet. Clinical interpretability was evaluated by providing a quantification of the curvature variation in the medial-longitudinal and transverse arches and computing the Djiann-Annonier angle for normal and flat feet from these new ARS axes. To test the capability to also provide a sound description of the foot kinematics, the alignment between mean helical axes (MHA) and ARS axes was quantified. RESULTS: ICC was 0.99 both inter- and intra-operator. Rotational consistency was 4.7 ± 3.5 ° and 6.2 ± 4.4° for the normal and flat feet, respectively; translational consistency was 4.4 ± 4.0 mm and 5.4 ± 2.9 mm for the normal and flat feet, respectively. In both these cases, the consistency was better than what was achieved by using principal axes of inertia. Curvature variation in the arches were well described and the measurements of the Djiann-Annoier angles from both normal and flat feet matched corresponding clinical observations. The angle between tibio-talar MHA and ARS mediolateral axis in the talus was 12.3 ± 6.0, while the angle between talo-calcaneal MHA and ARS anteroposterior axis in the calcaneus was 17.2 ± 5.6, suggesting good capability to represent joint kinematics. CONCLUSIONS: The proposed ARS definitions are robust and provide a solid base for the 3-dimensional description of posture and motion of the foot and ankle complex from medical imaging.


Asunto(s)
Calcáneo , Astrágalo , Tobillo , Articulación del Tobillo/diagnóstico por imagen , Calcáneo/diagnóstico por imagen , Humanos , Extremidad Inferior
4.
IEEE Trans Biomed Eng ; 68(3): 1084-1092, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32816671

RESUMEN

OBJECTIVE: The knowledge of individual joint motion may help to understand the articular physiology and to design better treatments and medical devices. Measurements of in-vivo individual motion are nowadays invasive/ionizing (fluoroscopy) or imprecise (skin markers). We propose a new approach to derive the individual knee natural motion from a three-dimensional representation of articular surfaces. METHODS: We hypothesize that tissue adaptation shapes articular surfaces to optimize load distribution. Thus, the knee natural motion is obtained as the envelope of tibiofemoral positions and orientations that minimize peak contact pressure, i.e. that maximize joint congruence. We investigated four in-vitro and one in-vivo knees. Articular surfaces were reconstructed from a reference MRI. Natural motion was computed by congruence maximization and results were validated versus experimental data, acquired through bone implanted markers, in-vitro, and single-plane fluoroscopy, in-vivo. RESULTS: In two cases, one of which in-vivo, maximum mean absolute error stays below 2.2° and 2.7 mm for rotations and translations, respectively. The remaining knees showed differences in joint internal rotation between the reference MRI and experimental motion at 0° flexion, possibly due to some laxity. The same difference is found in the model predictions, which, however, still replicate the individual knee motion. CONCLUSION: The proposed approach allows the prediction of individual joint motion based on non-ionizing MRI data. SIGNIFICANCE: This method may help to characterize healthy and, by comparison, pathological knee behavior. Moreover, it may provide an individual reference motion for the personalization of musculoskeletal models, opening the way to their clinical application.


Asunto(s)
Articulación de la Rodilla , Rodilla , Fenómenos Biomecánicos , Fémur , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Rango del Movimiento Articular , Tibia
5.
J Biomech ; 114: 110162, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33310277

RESUMEN

Optoelectronic stereophotogrammetric systems (OSSs) represent the standard for gait analysis. Despite widespread, their reported accuracy in nominal working conditions shows a variability of several orders of magnitude, ranging from few microns to several millimetres. No clear explanation for this variability has been provided yet. We hypothesized that this reflects an error affecting OSS outcomes when some of the tracked markers are totally or partially occluded. The aim of this paper is to quantify this error in static and dynamic conditions, also distinguishing between total and partial marker occlusion. A Vicon system featuring 8 cameras is employed in this study. Two camera distributions, one designed to maximize OSS accuracy and another one representative of a typical gait setup, are investigated. For both the setups, static and dynamic tests are performed, evaluating the different impact of partial and total marker occlusions. Marker occlusions significantly affected the system performances. The maximum measure variation reached 1.86 mm and 7.20 mm in static and dynamic conditions, respectively, both obtained in the case of partial occlusion. This systematic source of error is likely to affect gait measures: markers placed on the patient body are often visible only by half of the cameras, with swinging arms and legs providing moving occlusions. The maximum error observed in this study can potentially affect the kinematics outcomes of conventional gait models, particularly on frontal and coronal plane, and consequently the peak muscle forces estimated with musculoskeletal models.


Asunto(s)
Análisis de la Marcha , Fotogrametría , Fenómenos Biomecánicos , Marcha , Humanos , Pierna
6.
Gait Posture ; 80: 374-382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32622207

RESUMEN

BACKGROUND: The effect of tibiofemoral geometry on musculoskeletal function is important to movement biomechanics. RESEARCH QUESTION: We hypothesised that tibiofemoral geometry determines tibiofemoral motion and musculoskeletal function. We then aimed at 1) modelling tibiofemoral motion during normal activity as a function of tibiofemoral geometry in healthy adults; and 2) quantifying the effect of tibiofemoral geometry on musculoskeletal function. METHODS: We used motion data for six activity types and CT images of the knee from 12 healthy adults. Geometrical variation of the tibia and femoral articular surfaces were measured in the CT images. The geometry-based tibiofemoral motion was calculated by fitting a parallel mechanism to geometrical variation in the cohort. Matched musculoskeletal models embedding the geometry-based tibiofemoral joint motion and a common generic tibiofemoral motion of reference were generated and used to calculate joint angles, net joint moments, muscle and joint forces for the six activities analysed. The tibiofemoral model was validated against bi-planar fluoroscopy measurements for walking for all the six planes of motion. The effect of tibiofemoral geometry on musculoskeletal function was the difference between the geometry-based model and the model of reference. RESULTS: The geometry-based tibiofemoral motion described the pattern and the variation during walking for all six motion components, except the pattern of anterior tibial translation. Tibiofemoral geometry had moderate effect on cohort-averages of musculoskeletal function (R2 = 0.60-1), although its effect was high in specific instances of the model, outputs and activities analysed, reaching 2.94 BW for the ankle reaction force during stair descent. In conclusion, tibiofemoral geometry is a major determinant of tibiofemoral motion during walking. SIGNIFICANCE: Geometrical variations of the tibiofemoral joint are important for studying musculoskeletal function during normal activity in specific individuals but not for studying cohort averages of musculoskeletal function. This finding expands current knowledge of movement biomechanics.


Asunto(s)
Fémur/fisiología , Articulación de la Rodilla/fisiología , Músculo Esquelético/fisiología , Tibia/fisiología , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Caminata/fisiología
7.
Med Sci Sports Exerc ; 52(6): 1338-1346, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31895297

RESUMEN

PURPOSE: Although basic objective measures (e.g., knee laxity, strength, and hop tests) have been related to subjective measures of function, associations between knee-specific objective and subjective measures have yet to be completed. The objective was to determine if knee joint contact and ligament forces differ between pre- and post-anterior cruciate ligament (ACL) reconstructed states and if these forces relate to their patient's respective subjective functional ability scores. METHODS: Twelve patients performed a hopping task before and after reconstruction. Magnetic resonance images and OpenSim were used to develop patient-specific models in static optimization and joint reaction analyses. Questionnaires concerning each patient's subjective functional ability were also collected and correlated with knee joint contact and ligament forces. RESULTS: No significant differences were observed between deficient and reconstructed groups with respect to knee joint contact or ligament forces. Nevertheless, there were several significant (P < 0.05) moderate to strong correlations between subjective and objective measures including Tegner activity level to contact force in both states (r = 0.67-0.76) and International Knee Documentation Committee to compressive and anterior shear forces (r = 0.64-0.66). CONCLUSION: Knee-specific objective measures of a patient's functional capacity can represent their subjective ability, which explains this relationship to a greater extent than past anatomical and gross objective measures of function. This consolidation is imperative for improving the current rehabilitation schema as it allows for external validation of objective and subjective functional measures. With poor validation of subjective function against objective measures of function, the reinjury rate is unlikely to diminish, continuing the heavy financial burden on health care systems.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/fisiopatología , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/psicología , Articulación de la Rodilla/fisiología , Ligamentos Articulares/fisiología , Medición de Resultados Informados por el Paciente , Adulto , Fenómenos Biomecánicos , Simulación por Computador , Prueba de Esfuerzo , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Ligamentos Articulares/diagnóstico por imagen , Escala de Puntuación de Rodilla de Lysholm , Imagen por Resonancia Magnética , Masculino , Evaluación del Resultado de la Atención al Paciente , Rendimiento Físico Funcional , Estudios de Tiempo y Movimiento , Adulto Joven
8.
J Biomech Eng ; 141(5)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835284

RESUMEN

The study of the knee natural motion, namely the unresisted motion that the knee exhibits in the absence of external loads, provides insights into the physiology of this articulation. The natural motion represents the baseline condition upon which deformations of its passive structures (i.e., ligaments and cartilage) take place when loads are applied. Moreover, during natural motion, the strain energy density stored within ligaments and cartilage is minimized. This reduces the chance of microdamage occurrences and the corresponding metabolic cost for tissue repairing. The study of the knee natural motion is thus fundamental in understanding the joint physiology. This paper shows that the line of action of resultant forces of all the knee constraints provided by the passive structures must intersect the instantaneous helical axis (IHA) to make the knee natural motion possible. In other words, the lines of action of all these constraints must cross the same line at each flexion angle to guarantee the natural motion of the joint. This geometrical property is first proven theoretically and then verified in four in vitro and one in vivo experiments. The geometrical characterization of the knee natural motion presented in this study provides a fundamental property that must be satisfied to allow the correct joint mobility. The knowledge of this property may thus allow the definition of better models, treatments, and devices.

9.
J Biomech ; 83: 9-15, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30527390

RESUMEN

BACKGROUND: OpenSim models are typically based on cadaver findings that are generalized to represent a wide range of populations, which curbs their validity. Patient-specific modelling through incorporating magnetic resonance imaging (MRI) improves the model's biofidelity with respect to joint alignment and articulations, muscle wrapping, and ligament insertions. The purpose of this study was to determine if the inclusion of an MRI-based knee model would elicit differences in lower limb kinematics and resulting knee ligament lengths during a side cut task. METHODS: Eleven participants were analyzed with the popular Rajagopal OpenSim model, two variations of the same model to include three and six degrees of freedom knee (DOF), and a fourth version featuring a four DOF MRI-based knee model. These four models were used in an inverse kinematics analysis of a side cut task and the resulting lower limb kinematics and knee ligament lengths were analyzed. RESULTS: The MRI-based model was more responsive to the movement task than the original Rajagopal model while less susceptible to soft tissue artifact than the unconstrained six DOF model. Ligament isometry was greatest in the original Rajagopal model and smallest in the six DOF model. CONCLUSIONS: When using musculoskeletal modelling software, one must acutely consider the model choice as the resulting kinematics and ligament lengths are dependent on this decision. The MRI-based knee model is responsive to the kinematics and ligament lengths of highly dynamic tasks and may prove to be the most valid option for continuing with late-stage modelling operations such as static optimization.


Asunto(s)
Articulación de la Rodilla/diagnóstico por imagen , Ligamentos Articulares/diagnóstico por imagen , Imagen por Resonancia Magnética , Fenómenos Mecánicos , Modelación Específica para el Paciente , Adulto , Artefactos , Fenómenos Biomecánicos , Femenino , Humanos , Articulación de la Rodilla/fisiología , Ligamentos Articulares/fisiología , Masculino , Rango del Movimiento Articular , Programas Informáticos
10.
J Biomech ; 62: 77-86, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28601242

RESUMEN

Kinematic models of lower limb joints have several potential applications in musculoskeletal modelling of the locomotion apparatus, including the reproduction of the natural joint motion. These models have recently revealed their value also for in vivo motion analysis experiments, where the soft-tissue artefact is a critical known problem. This arises at the interface between the skin markers and the underlying bone, and can be reduced by defining multibody kinematic models of the lower limb and by running optimization processes aimed at obtaining estimates of position and orientation of relevant bones. With respect to standard methods based on the separate optimization of each single body segment, this technique makes it also possible to respect joint kinematic constraints. Whereas the hip joint is traditionally assumed as a 3 degrees of freedom ball and socket articulation, many previous studies have proposed a number of different kinematic models for the knee and ankle joints. Some of these are rigid, while others have compliant elements. Some models have clear anatomical correspondences and include real joint constraints; other models are more kinematically oriented, these being mainly aimed at reproducing joint kinematics. This paper provides a critical review of the kinematic models reported in literature for the major lower limb joints and used for the reduction of soft-tissue artefact. Advantages and disadvantages of these models are discussed, considering their anatomical significance, accuracy of predictions, computational costs, feasibility of personalization, and other features. Their use in the optimization process is also addressed, both in normal and pathological subjects.


Asunto(s)
Marcha/fisiología , Articulaciones/fisiología , Extremidad Inferior/fisiología , Modelos Biológicos , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Humanos
11.
J Biomech ; 48(12): 2960-7, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26300403

RESUMEN

Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.


Asunto(s)
Adaptación Fisiológica , Articulación del Tobillo/fisiología , Fenómenos Mecánicos , Tibia/fisiología , Fenómenos Biomecánicos , Humanos , Modelos Biológicos , Movimiento
12.
J Biomech ; 47(16): 3787-93, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25468667

RESUMEN

Previous studies suggest that osteoarthritis (OA) is related to abnormal or excessive articular contact stress. The peak pressure resulting from an applied load is determined by many factors, among which is shape and relative position and orientation of the articulating surfaces or, referring to a more common nomenclature, joint congruence. It has been hypothesized that anatomical differences may be among the causes of OA. Individuals with less congruent joints would likely develop higher peak pressure and thus would be more exposed to the risk of OA onset. The aim of this work was to determine if the congruence of the first carpometacarpal (CMC) joint differs with the early onset of OA or with sex, as the female population has a higher incidence of OA. 59 without and 38 with early OA were CT-scanned with their dominant or arthritic hand in a neutral configuration. The proposed measure of joint congruence is both shape and size dependent. The correlation of joint congruence with pathology and sex was analyzed both before and after normalization for joint size. We found a significant correlation between joint congruence and sex due to the sex-related differences in size. The observed correlation disappeared after normalization. Although joint congruence increased with size, it did not correlate significantly with the onset of early OA. Differences in joint congruence in this population may not be a primary cause of OA onset or predisposition, at least for the CMC joint.


Asunto(s)
Articulaciones Carpometacarpianas/diagnóstico por imagen , Osteoartritis/diagnóstico por imagen , Caracteres Sexuales , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Osteoartritis/etiología , Tomografía Computarizada por Rayos X , Adulto Joven
13.
Proc Inst Mech Eng H ; 228(9): 935-41, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25231666

RESUMEN

In the medical world, the term "congruence" is used to describe by visual inspection how the articular surfaces mate each other, evaluating the joint capability to distribute an applied load from a purely geometrical perspective. Congruence is commonly employed for assessing articular physiology and for the comparison between normal and pathological states. A measure of it would thus represent a valuable clinical tool. Several approaches for the quantification of joint congruence have been proposed in the biomechanical literature, differing on how the articular contact is modeled. This makes it difficult to compare different measures. In particular, in previous articles a congruence measure has been presented which proved to be efficient and suitable for the clinical practice, but it was still empirically defined. This article aims at providing a sound theoretical support to this congruence measure by means of the Winkler elastic foundation contact model which, with respect to others, has the advantage to hold also for highly conforming surfaces as most of the human articulations are. First, the geometrical relation between the applied load and the resulting peak of pressure is analytically derived from the elastic foundation contact model, providing a theoretically sound approach to the definition of a congruence measure. Then, the capability of congruence measure to capture the same geometrical relation is shown. Finally, the reliability of congruence measure is discussed.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Articulaciones/fisiología , Humanos , Modelos Biológicos , Estrés Mecánico , Soporte de Peso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...